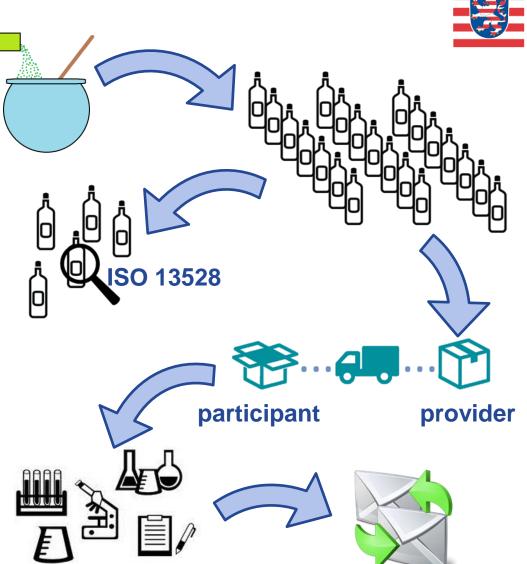

Jens Cordes · Benno Stoffels · Dominik Wildanger

The Question of Homogeneity inside a Chimney: Application of ISO 13528 to Stack Emission Proficiency Tests


8th EURACHEM PT Workshop, Berlin, 9th October 2014

The "common" Proficiency Test

- **Production** of a "huge" batch of "test item"
- Separation into small (equal) portions
- Homogeneity tests
 (ISO 13528) on these
 small portions
- **Shipment** of test item portions to the participants
- Participants analyze the test item in their own laboratory
- Results and evaluation

Dr. Jens Cordes

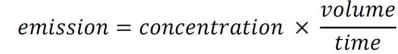
Hessisches Landesamt für Umwelt und Geologie (*Hessian Agency for the Environment and Geology*) Dezernat I3 – Luftreinhaltung, Emissionen (*Department I3 – Air Pollution, Emission*) HESSEN

Homogeneity of the "Test Items": ISO 13528 Annex B

Procedure according to ISO 13528:

- Choose a property (e.g. a concentration)
- Choose a reliable laboratory (low repeatability standard deviation)
- Prepare and package the test items (ready for shipment)
- Select \geq 10 items (randomly)
- Prepare \geq 2 replicates of each of these items (repeat determination)
- Analyze all samples (in random order)
- Check relation of between-samples standard deviation s_s to criterion for proficiency assessment σ_{pt}:

$$s_s \le 0.3 \sigma_{pt}$$

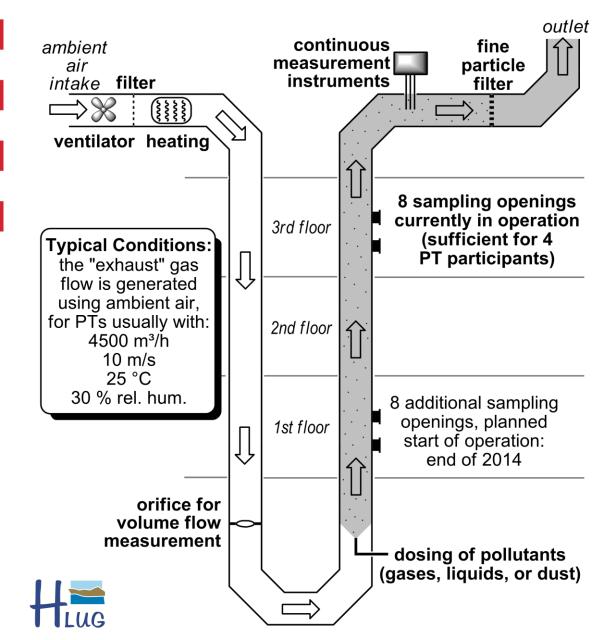


Dr. Jens Cordes Hessisches Landesamt für Umwelt und Geologie (*Hessian Agency for the Environment and Geology*) Dezernat I3 – Luftreinhaltung, Emissionen (*Department I3 – Air Pollution, Emission*)

Stack Emissions and HLUG's Proficiency Test

- **Stack emissions:** generally exhaust gases from factories etc.
- Important pollutants: SO₂, NO_x, organic compounds, heavy metals (dust)
- Measurement: pollutant concentration and volume flow:

A stack emission proficiency test therefore must include:


- volume flow measurement
- sampling
- analysis of the samples

→ This requires an actual emission source! (preferably under controllable conditions)

ESA – Emission Simulation Apparatus

HESSEN

Key figures:

- Total length: 110 m
- Height: ca. 30 m
- Inner diameter: 40 cm
- Artificial emission source with controllable conditions:
 - Volume flow
 - Temperature
 - Concentration
- Integrated into HLUG-building in Kassel, Germany

The "common" Proficiency Test and HLUG's Stack Emission Proficiency Test

"common" proficiency test:

- Production of a "huge"
 batch of "test item"
- Separation into
 small portions
- Homogeneity tests on these small portions (concentrations may vary from portion to portion)
- **Shipment** of test item portions to the participants
- Participants analyze the test item in their own laboratory

HLUG:

- The "test item" (pollutant-doped air stream) is **produced constantly** during the proficiency test and **exists only for a few seconds**
- Samples are taken (as part of the PT) at different positions along the chimney
- Homogeneity tests on these different positions along the chimney (concentrations may vary from position to position)
- **Participants need to visit HLUG** in Kassel (Germany) to do the proficiency test
- Samples are taken by participants at HLUG's ESA and are later analyzed in their own laboratory

New Interpretation of Homogeneity in accordance with ISO 13528

Procedure according to ISO 13528:

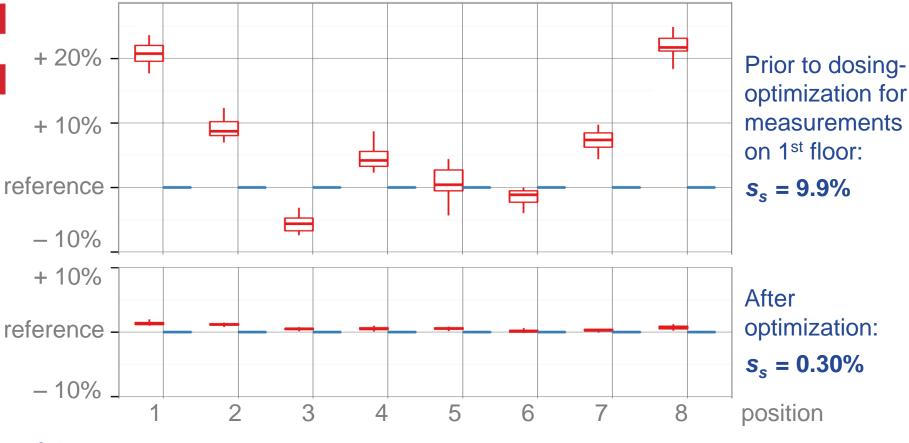
- Choose a property (e.g. SO₂-concentration)
- Choose a reliable laboratory (HLUG)
- Prepare and package the test items
- Select ≥ 1D itsms
- Prepare ≥ 2 replicates
- Analyze all samples

Instead:

- Take ≥ 10 x 2 samples at different positions along the chimney
- Check relation of between-samples standard deviation s_s and criterion for proficiency assessment σ_{pt}:

$s_s \leq 0.3 \sigma_{pt}$

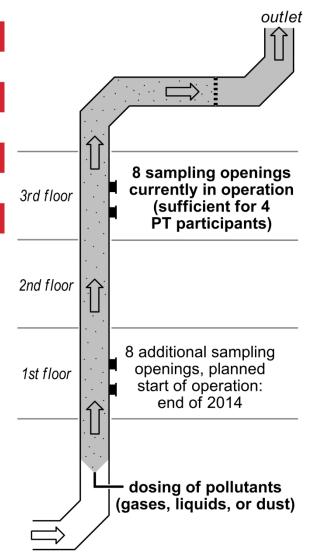
→ Equivalence of sampling positions (comparable conditions for all participants)



Gaseous Stack Emissions

• Test item: *m*-xylene-doted air

- Measurement: **total-C** with **FID** (Flame Ionization Detector)
- Preliminary results for 1st floor (red: sampling positions, blue: fixed reference):



Dr. Jens Cordes

Hessisches Landesamt für Umwelt und Geologie (*Hessian Agency for the Environment and Geology*) Dezernat I3 – Luftreinhaltung, Emissionen (*Department I3 – Air Pollution, Emission*) Folie 8

Gaseous Stack Emissions

Result of Homogeneity test (1st floor openings) in accordance with ISO 13528 Annex B:

• Determination of total-C (*m*-xylene) with FID, HLUG's current criterion for proficiency assessment: $\sigma_{pt} = 2.5\%$ (continuous measurement of total-C)

Before dosing-optimization: $s_s = 9.9\% = 4.0 \sigma_{pt}$ (must be $\leq 0.3 \sigma_{pt}$) (but already homogeneous on 3rd floor!)

After dosing-optimization: $s_s = 0.30\% = 0.12 \sigma_{pt}$ (must be $\leq 0.3 \sigma_{pt}$) (suitable for proficiency tests)

Dr. Jens Cordes

Hessisches Landesamt für Umwelt und Geologie (*Hessian Agency for the Environment and Geology*) Dezernat I3 – Luftreinhaltung, Emissionen (*Department I3 – Air Pollution, Emission*)

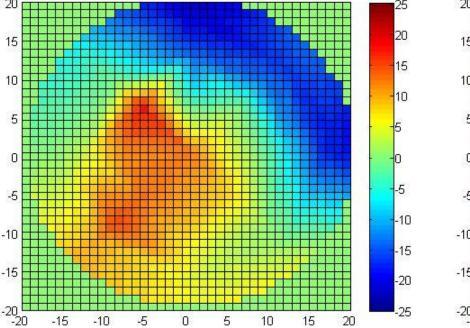
Particulate Stack Emissions

Additional Problems compared to gases and vapours:

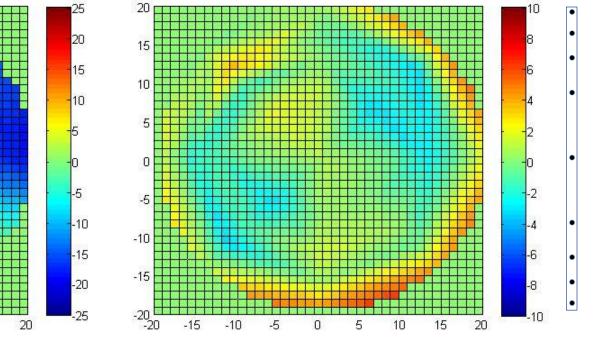
- Homogeneity is much more difficult to achieve: Particles show size-dependent inertia
- The measured property is **mass per volume**, meaning: dust must be collected and weighed
- Discontinuous measurement is necessary:
 30 minute sampling (using a weighed filter), taken at 4 points along cross section (grid measurement, each for 7.5 min)

Dr. Jens Cordes

Hessisches Landesamt für Umwelt und Geologie (*Hessian Agency for the Environment and Geology*) Dezernat I3 – Luftreinhaltung, Emissionen (*Department I3 – Air Pollution, Emission*)



Particulate Stack Emissions


Dosing-optimization for measurements on 1st floor:

- Continuous measurements of fine particle concentration at 33 points along cross section (gives only relative values)
- Optimization progress so far (please note the different scales!):

Initial situation:

Result after "some" improvements:

(But again: homogeneous on 3rd floor already!)

Dr. Jens Cordes

IG

Hessisches Landesamt für Umwelt und Geologie (*Hessian Agency for the Environment and Geology*) Dezernat I3 – Luftreinhaltung, Emissionen (*Department I3 – Air Pollution, Emission*) Folie 11

HESSEN

Conclusion

- Stack emission measurements require determination of both concentration and volume flow
- HLUG offers stack emission proficiency tests on a factory chimney replica (ESA)
- Participants need to come to the ESA for proficiency testing
- The "test item" (pollutant-doped air) is generated constantly and exists only for a few seconds (from dosing-lab to roof)
- Comparable conditions for all participants means here: equivalent sampling positions along the chimney
- This requires homogeneous distribution of pollutants inside the chimney
- The equivalence of sampling openings along HLUG's ESA could be assessed by (analogue) application of ISO 13528 Annex B
- Sufficient homogeneity was demonstrated for gases and liquid vapors, similar assessments for dust are in progress

