

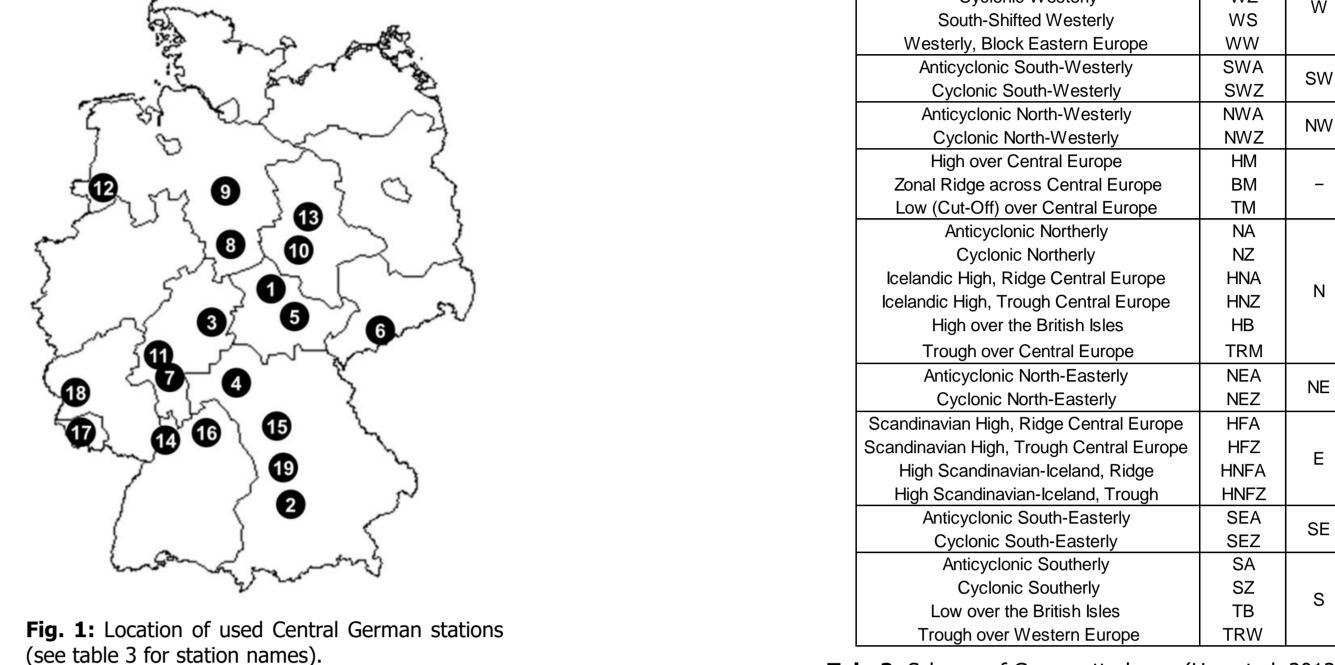
Decadal trends of high-intensity precipitation events and relation to atmospheric circulation in Central Germany

Johannes Damster¹, Andreas Hoy², Jürg Luterbacher¹

¹ Justus-Liebig-University Giessen, Department of Geography, Section: Climatology, Climate Dynamics and Climate Change, Senckenbergstr. 1, 35390 Gießen, Germany ² Hessian Agency for Nature Conservation, Environment and Geology, Rheingaustr. 186, 65203 Wiesbaden, Germany

RESEARCH QUESTIONS

• Which trends appear in high-intensity precipitation events, comparing temporal high-resolution data (5min, 1h, 6h) with daily precipitation data in Central Germany (period 1961 to 2015) • How does atmospheric circulation impacts the occurrence of high-intensity precipitation events, comparing precipitation data with 5min and daily resolution?


METHODS

Selection criteria of precipitation stations:

DATA

Precipitation

- Stations: 19 in Central Germany
- Temporal resolution: from 5 minutes
- Time frame: 1961 to 2015
- Season: May to September
- Origin: DWD (Climate Data Centre)

Atmospheric circulation

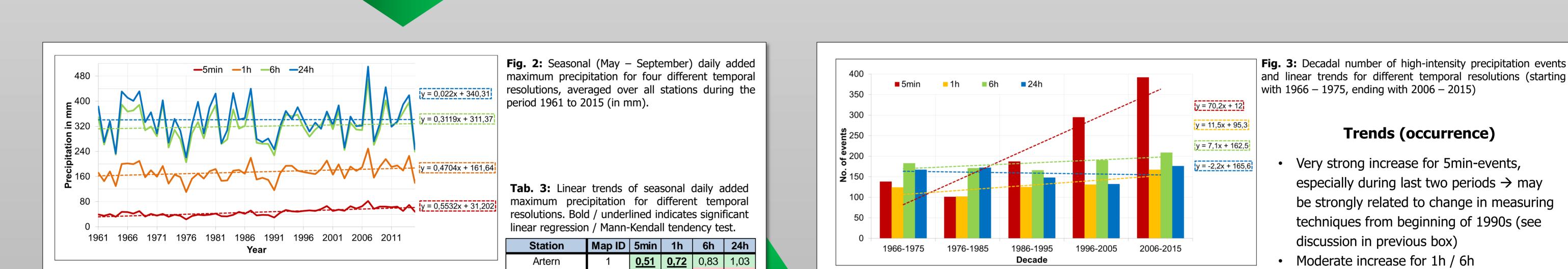
- Daily European "Grosswetterlagen"
- Manual classification (GWLc) concept by Baur et al. (1944) and Hess and Brezowsky (1977); data Werner and Gerstengarbe (2010)
- Automated classification (SVGc) concept by P. James, see

Hoy et al. (2012)	Grosswetterlage (GWL)	Abbrev.	Inflow	
	Anticyclonic Westerly	WA		
	Cyclonic Westerly	WZ	W	
	South-Shifted Westerly	WS	vv	
	Westerly, Block Eastern Europe	WW		
	Anticyclonic South-Westerly	SWA SWA		
	Cyclonic South-Westerly	SWZ	SW	
	Anticyclonic North-Westerly	NWA		
	Cyclonic North-Westerly	NWZ	NW	
	High over Central Europe	HM		
	Zonal Ridge across Central Europe	BM	-	
	Low (Cut-Off) over Central Europe	TM		
	Anticyclonic Northerly	NA		

JUSTUS-LIEBIG-

Geograp

UNIVERSITÄT



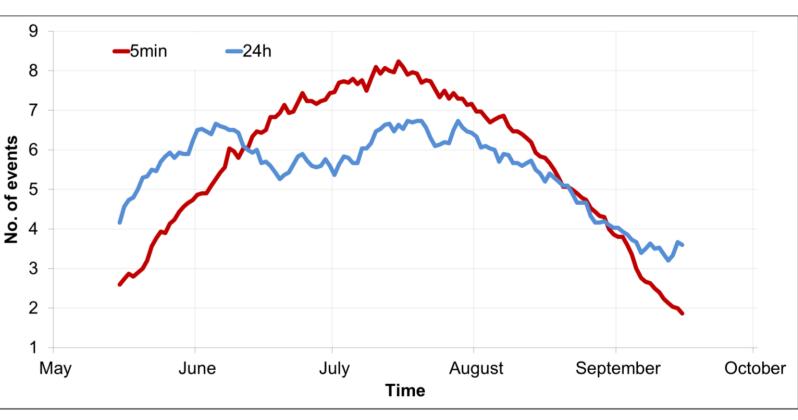
- Central German stations with...
- ...as little as possible data gaps in extended summer season (May to September)
- ... no considerable shifts in station location and environment
- Linear regression (LR) and Mann-Kendall tendency test (MK)

 "High-intensity precipitation event": 	Temporal resolution	Threshold value	Origin
	5min	5 mm	Lauer and Bendix 2004
Tab. 1: Threshold values for differenttemporal resolutions and their origins (Lauer& Bendix 2004 and DWD 2018).	1h	15 mm	Warning Level 2 - DWD
	<u>Ch</u>	20 mm	Warning Level 2 - DWD
	24h	30 mm	Warning Level 2 - DWD

Tab. 2: Scheme of Grosswetterlagen (Hoy et al. 2012).

RESULTS

Trends (intensity)


- 5min-data: significant increase in intensity for almost all stations
- 1h-data: fewer stations with significant increase, but generally increasing trends
- 6h-data and daily data: no clear and significant trends
- \rightarrow Increase in high-resolution data may be connected to a) more intense and/or higher number of convective showers and b) better observation methods for high-resolution precipitation
- \rightarrow More research needed to find out extent of "real" climate signal

Augsburg	2	<u>0,57</u>	0,36	-0,09	-0,83	
Bad Hersfeld	3	0,77	<u>0,89</u>	0,66	0,31	
Bad Kissingen	4	0,47	0,41	0,21	-0,37	
Erfurt	5	0,59	0,81	0,82	1,13	
Fichtelberg	6	0,41	<u>0,71</u>	1,25	1,33	
Frankfurt	7	0,65	0,59	-0,04	-0,55	
Göttingen	8	0,69	0,64	0,36	0,20	
Hannover	9	0,25	-0,02	-0,09	-0,34	
Harzgerode	10	<u>0,33</u>	0,46	0,80	0,67	
Kleiner Feldberg	11	<u>0,90</u>	0,79	0,15	-0,37	
Lingen	12	<u>0,78</u>	0,22	0,07	-0,37	
Magdeburg	13	<u>0,29</u>	0,55	1,05	1,11	
Mannheim	14	<u>0,71</u>	0,33	0,03	-0,55	
Nürnberg	15	<u>0,56</u>	0,51	0,32	-0,07	
Oehringen	16	<u>0,64</u>	0,35	0,00	-0,84	
Saarbrücken	17	<u>0,54</u>	0,29	0,03	-0,50	
Trier	18	<u>0,36</u>	0,12	-0,04	-0,36	
Weissenburg	19	<u>0,58</u>	<u>0,69</u>	0,69	0,38	
Averaged	-	<u>0,55</u>	<u>0,47</u>	0,31	0,02	

Annual cycle (occurrence)

- 5min-events: mainly driven by convection peak in mid-July indicates importance of solar altitude and higher air temperatures
- Daily events: driven by convection (high level from end of May to beginning of August) and atmospheric circulation (peaks beginning of June and mid/end of July)

Fig. 4: Absolute daily number of high-intensity precipitation events for 5min (RR \geq 5mm) and daily resolution (RR \geq 30 mm) within 1961 – 2015 (30-day-smoothing).

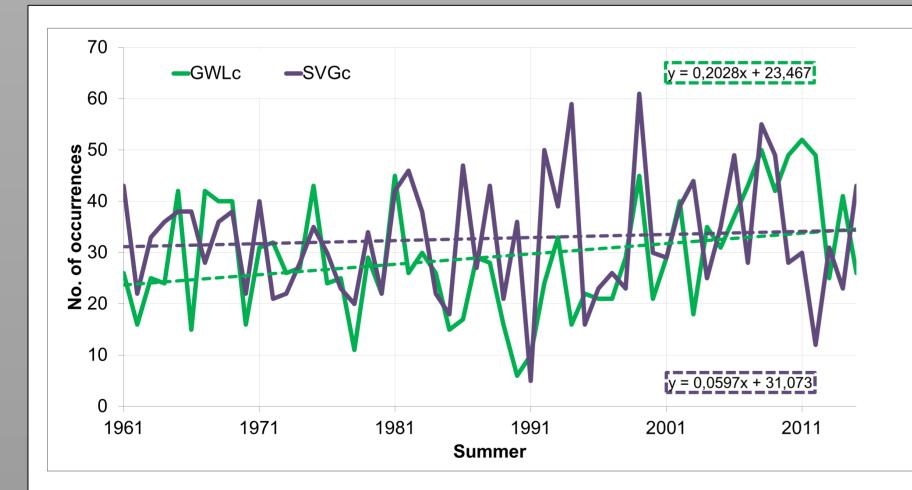


Fig. 6: Frequency of highly convection-relevant Grosswetterlagen (see table 4) during May -September and trends per year for GWLc (green) and SVGc (purple).

Trends convectionrelevant Grosswetterlagen

 \rightarrow For both classifications: nonsignificant frequency increase, but possible backup for more events from the 1990s

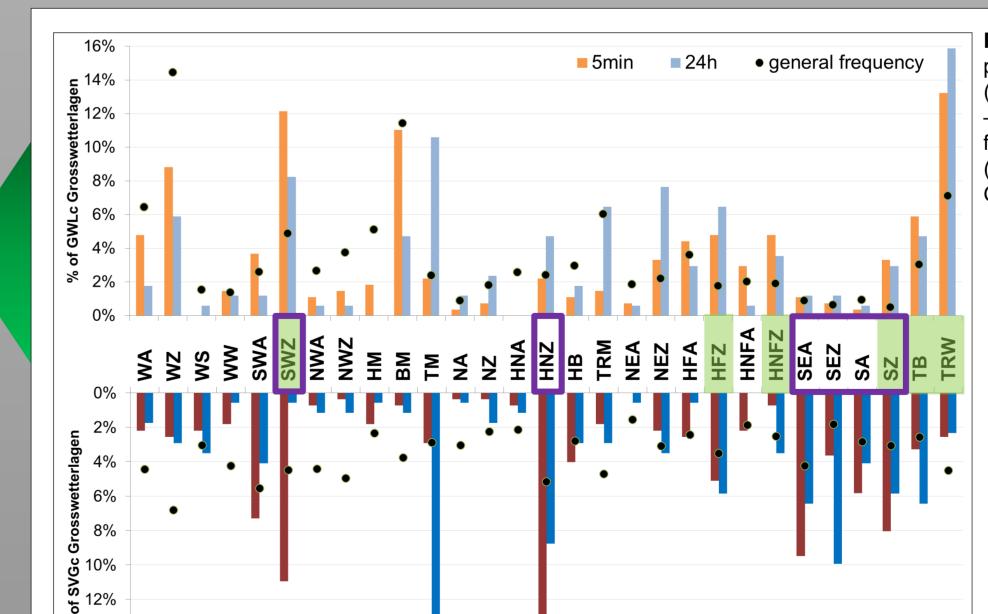


Fig. 5: Relative frequency of high-intensity precipitation events within Grosswetterlagen of GWLc (top) and SVGc (bottom) for May - September 1961 2015. Black dots indicate Grosswetterlagen frequency [% of all days]. Green (GWLc) / purple (SVGc) markings show highly convection-relevant Grosswetterlagen selected according to table 4.

		_		
Grosswetterlage	GWLc	SVGc	Inflow	
WA	2%	2%		
WZ	2%	1%	W	
WS	0%	2%	vv	
WW	3%	1%		
SWA	5%	4%	C1//	
SWZ	8%	8%	SW	
NWA	1%	1%		

No trends for daily data

CONCLUSIONS

Strong increase in high-intensity precipitation events of short duration (especially 5min, but also 1h)

- Clarification of causes still needed (climatology vs. improvement of recording equipment)
- Grosswetterlagen with southern component are more likely to cause these events, through the transport of warm air.
- No significant increase in frequency of "highly convection-relevant" Grosswetterlagen, but possible impact from 1990s (more research needed).

REFERENCES:

- Baur F., Hess P., Nagel H. (1944): Kalender der Großwetterlagen Europas 1881–1939. Bad Homburg v. d. H., 35 pp.
- DWD (2018): Warnkriterien. Available via: www.dwd.de/DE/wetter/warnungen_aktuell/kriterien/warnkriterien.html?nn=605882.
- Hess, P., Brezowsky H. (1977): Katalog der Großwetterlagen Europas (1881-1976). 3., verbesserte und ergänzte Auflage. Berichte des Deutschen Wetterdienstes 113.
- Hoy A., Jaagus J., Sepp M., Matschullat J. (2012): Spatial response of two European atmospheric circulation classifications (data 1901–2010). Theor Appl Climatol (2013) 112: 73–88.
- Lauer W., Bendix J. (2004): Klimatologie. 2., neu bearbeitete Auflage. Braunschweig.
- Werner P.C., Gerstengarbe F.W. (2010): Katalog der Großwetterlagen Europas (1881-2009). 7., verbesserte und ergänzte Auflage. Berichte des Deutschen Wetterdienstes 119.

9 ¹⁰ / ¹⁰		NWA	1%	1%	
5 12%		NWZ	1%	0%	NW
* _{14%}		HM	1%	3%	
	■ 5min ■ 24h ● general frequency	BM	3%	1%	-
16%		TM	3%	3%	
		NA	1%	0%	
		NZ	1%	1%	
SVGc (occurrence)	GWLc (occurrence)	HNA	0%	1%	Ν
		HNZ	3%	9%	
5min-events	5min-events	HB	1%	5%	
 High frequency of Grosswetterlage 	High frequency of Grosswetterlagen	TRM NEA	1% 1%	1% 0%	
5 1 7 5	5 1 7 5	NEZ	5%	0% 2%	NE
with southeastern, southern an	WZ, BM, TRW, TRM and WA (different	HFA	4%	3%	
southwestern (warm) inflow and	distribution than SVGc).	HFZ	9%	5%	
	,	HNFA	5%	4%	E
 HNZ = relevance because of influence 	J	HNFZ	8%	1%	
of a) cold air pool over western Europ	e Grosswetterlagen with similar inflow	SEA	4%	7%	SE
with cold air stream from norther	direction like for SVGc.	SEZ	4%	7%	35
		SA	1%	7%	
Europe or b) disturbances of th		SZ	21%	9%	S
southern sector of the Atlantic front	Daily events	TB	6%	4%	
7000 (14/2000		TRW	6%	2%	
ZONE (Werner and Gerstengarbe 2010).		Tab. 4:. Relativ			
		with high-intensit			
Daily events		more (of 1		statior	•
•		Grosswetterlage SVGc. Gross	wetter		
 Often connected to TM, HNZ and south 	-	frequencies >5°		-	with
and southeasterlies.		"highly convection			
		fig. 5 and 6.			

EMS Annual Meeting: European Conference for Applied Meteorology and Climatology 2018 | 3–7 September 2018 | Budapest, Hungary